Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Eric A. Muller, ${ }^{\text {a }}$

Amy Narducci Sarjeant ${ }^{\text {b }}$ and Alexander J. Norquist ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and ${ }^{\text {b }}$ Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA

Correspondence e-mail:

anorquis@haverford.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.043$
$w R$ factor $=0.095$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$: a new $\boldsymbol{\beta}$-octamolybdate salt

Crystals of the title compound, 2,5-dimethylpiperazinediium β-octamolybdate, were grown under mild hydrothermal conditions. The anion and cations lie on inversion centers. A network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds helps to stabilize the crystal packing.

Comment

Interest in octamolybdate anions has spanned several decades, from the initial report of Lindqvist (1950) to more recent times (Yan et al., 2003). The octamolybdate anion can adopt several structures, with the α (Hsieh et al., 1987), β (Harrison et al., 1993), δ (Rarig \& Zubieta, 2001) and γ (Niven et al., 1991) forms being the most common. The continued interest in such compounds has stemmed from their diversity and ability to interconvert (Wang et al., 1993). Our interest in these materials is focused upon molybdate reactions in the presence of concentrated sulfuric acid, and the associated structural effects.

The β-octamolybdate anions present in the title compound, (I) (Fig. 1), are similar to previously reported species. Four crystallographically distinct molybdenum centers are observed and the complete anion is generated by inversion symmetry. Each Mo^{6+} cation resides near to the center of a coordination octahedron. Distinct distortions from the centers of these octahedra are observed, a result of the second-order JahnTeller activity of Mo^{6+} (Pearson, 1969; Wheeler et al., 1986; Kunz \& Brown, 1995; Halasyamani, 2004). Both bridging (O_{b}) and terminal $\left(\mathrm{O}_{t}\right)$ oxide ions are observed. The $\mathrm{Mo}-\mathrm{O}_{t}$ bonds [1.690 (6)-1.720 (6) Å] are shorter than the $\mathrm{Mo}-\mathrm{O}_{b}$ bonds [1.760 (6)-2.460 (6) Å] (Table 1). Eight $\left[\mathrm{MoO}_{6}\right]$ octahedra share both edges and vertices, forming the well known β octamolybdate anion.

Received 10 March 2005 Accepted 15 March 2005 Online 25 March 2005

Figure 1
View of (I), showing 50\% displacement ellipsoids (abritrary spheres for the H atoms). Atoms labeled with the suffixes hash (\#), plus (+) and asterisk (*) are generated by the symmetry codes $(-x,-y, 2-z)$, $(-x-1,-y, 2-z)$ and $(-x,-y-1,2-z)$, respectively.

The three-dimensional structure of (I) consists of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions and 2,5-dimethylpiperazinediium cations. There are two distinct cations, both generated by inversion symmetry from the atoms of the respective asymmetric unit (Fig. 1). The $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions are arranged in a pseudo-body-centered geometry, with anions centered at $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, as shown in Fig. 2. The $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+}$ cations reside between anions and interact with them by way of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

Compound (I) was synthesized through the addition of MoO_{3} $\left(0.492 \mathrm{~g}, 3.418 \times 10^{-3} \mathrm{~mol}\right), \mathrm{H}_{2} \mathrm{SO}_{4}\left(0.088 \mathrm{~g}, 8.98 \times 10^{-3} \mathrm{~mol}\right), 2,5-$ dimethylpiperazine $\left(0.143 \mathrm{~g}, 1.25 \times 10^{-3} \mathrm{~mol}\right)$ and deionized water $\left(0.994 \mathrm{~g}, 5.52 \times 10^{-2} \mathrm{~mol}\right)$ to a 23 ml Teflon-lined pressure vessel. The reaction gel was heated at 453 K for 24 h , and then cooled slowly to room temperature over an additional 24 h . Crystals of (I) were recovered by filtration.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$
$M_{r}=1415.92$
Monoclinic, $P 2_{1} / n$
$a=11.0450$ (11) A
$b=12.3699$ (11) A
$c=13.0539$ (15) A
$\beta=113.148(10)^{\circ}$
$V=1639.9(3) \AA^{3}$
$Z=2$

Data collection

Oxford Diffraction CrysAlis CCD diffractometer
ω scans
Absorption correction: analytical (multifaceted crystal model;
Clark \& Reid, 1995)
$T_{\text {min }}=0.636, T_{\text {max }}=0.862$
14643 measured reflections
$D_{x}=2.867 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3088
reflections
$\theta=3.9-33.3^{\circ}$
$\mu=3.06 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Plate, colorless
$0.09 \times 0.08 \times 0.02 \mathrm{~mm}$

5519 independent reflections
2797 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=33.4^{\circ}$
$h=-15 \rightarrow 16$
$k=-16 \rightarrow 18$
$l=-19 \rightarrow 18$

Figure 2
Packing in the unit cell of (I), with the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions shown in polyhedral representation. H atoms have been omitted for clarity.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.095$
$S=0.85$
Robust weighting scheme (Prince 1982) fitted by a five-term

Chebychev polynomial (Watkin, 1994) with coefficients $12.6,20.2$,
$12.3,5.21$ and 1.63
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=2.41 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-1.35 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

Mo1-O1	1.708 (6)	Mo3-O4 ${ }^{\text {i }}$	2.360 (5)
Mo1-O2	1.700 (6)	Mo3-O5	2.301 (6)
Mo1-O3	1.922 (6)	Mo3-O6 ${ }^{\text {i }}$	2.016 (6)
Mo1-O4	2.001 (6)	Mo3-O9	1.712 (6)
Mo1-O5	2.346 (6)	Mo3-O10	1.702 (6)
Mo1-O6	2.347 (6)	Mo3-O11	1.919 (6)
Mo2-O4	1.940 (6)	Mo4-O3	1.897 (6)
Mo2-O5	2.134 (6)	Mo4-O5	2.460 (6)
$\mathrm{Mo} 2-\mathrm{O} 5^{\text {i }}$	2.371 (5)	Mo4-O8 ${ }^{\text {i }}$	2.282 (5)
Mo2- $\mathrm{Ob}^{\text {i }}$	1.986 (6)	Mo4-O11	1.929 (6)
Mo2-O7	1.690 (6)	Mo4-O12	1.702 (6)
Mo2-O8	1.760 (6)	Mo4-O13	1.720 (6)

Symmetry code: (i) $-x,-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {ii }}$	1.01	1.83	2.783 (9)	156
N1-H2 . ${ }^{\text {O }}$ 6	1.00	1.92	2.871 (9)	158
N2-H9 . . O11 ${ }^{\text {i }}$	1.00	1.96	2.929 (11)	164
$\mathrm{N} 2-\mathrm{H} 10 \cdots \mathrm{O} 12{ }^{\text {iii }}$	1.02	1.92	2.882 (10)	156

Symmetry codes: (i) $-x,-y, 2-z$; (ii) $-\frac{1}{2}-x, y-\frac{1}{2}, \frac{5}{2}-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{5}{2}-z$.

metal-organic papers

H atoms were placed geometrically after each cycle in idealized locations and refined as riding on their carrier atoms. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ was applied in all cases. The highest peak is $1.13 \AA$ from atom N2 and the deepest hole is $1.30 \AA$ from O5.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: CRYSTALS.

The authors acknowledge support from the the Camille and Henry Dreyfus Foundation.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-97.
Dowty, E. (2002). ATOMS. Version 6.0. Shape Software, Kingsport, Tennessee, USA.
Halasyamani, P. S. (2004). Chem. Mater. 16, 3586-3592.
Harrison, W. T. A., Stucky, G. D. \& Gier, T. E. (1993). Acta Cryst. C49, 19001902.

Hsieh, T.-C., Shaikh, S. N. \& Zubieta, J. (1987). Inorg. Chem. 26, 4079-4089.
Kunz, M. \& Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.
Lindqvist, I. (1950). Ark. Kemi. 3, 349-355.
Niven, M. L., Cruywagen, J. J. \& Heyns, J. B. B. (1991). J. Chem. Soc. Dalton Trans. pp. 2007-2010.
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Pearson, R. G. (1969). J. Am. Chem. Soc. 91, 4947-4955.
Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Rarig, R. S. \& Zubieta, J. (2001). Inorg. Chim. Acta, 312, 188-196.
Wang, Q., Xu, X. \& Wang, X. (1993). Acta Cryst. C49, 464-467.
Watkin, D. J. (1994). Acta Cryst, A50, 411-437.
Wheeler, R. A., Whangbo, M. H., Hughbanks, T., Hoffmann, R., Burdett, J. K. \& Albright, T. A. (1986). J. Am. Chem. Soc. 108, 2222-2236.
Yan, Y., Wu, C.-D., Liu, J.-H., Zhang, Q.-Z. \& Lu, C.-Z. (2003). Acta Cryst. E59, m102-m104.

